
Small Linux Cluster Workshop:

Installing MPI and Running Parallel Code

Markus Berndt, berndt@lanl.gov

T-7: Mathematical Modelling and Analysis Group
Los Alamos National Laboratory

July 8, 2001

Outline

• What is MPI?

• Installation of MPICH.

• Installation of LAM/MPI.

• Run some parallel code.

1

Why Message Passing?

• Memory hierarchy on a serial computer:

– register
– cache (L1, L2, ...)
– ram

• All memory is directly accesible by the CPU

• Memory hierarchy on a cluster ... one additional level:

– register
– cache (L1, L2, ...)
– ram
– ram on a different node

• ram on a different node is only accessible through communication (very slow
in comparison to local memory)

2

MPI – an Overview

• MPI stands for message-passing application programmer interface.

• Protocol and semantic specifications for how its features must behave in any
implementation

• Provides abstractions for processes at two levels:

– Processes are named according to the rank of the group in which the
communication is being performed

– Virtual topologies allow for graph or Cartesian naming of processes (this
helps relating the application semantics to the message passing semantics
in a convenient, efficient way)

• Provides three additional classes of services:

– environmental inquiry,
– basic timing information for application performance measurement,
– profiling interface for external performance monitoring.

3

MPI – Available Implementations

• MPICH (http://www-unix.mcs.anl.gov/mpi/mpich at ANL, MSU)

– Systems that are supported:
Workstation clusters (with ch p4 or ch nexus)
Windows NT and Windows 2000
IBM SP (ch mpl)
Intel i860, Delta, and Paragon (ch nx)
Shared Memory systems (SMPs) (with ch shmem)
CRAY T3D (t3d)

– Many vendor implementations of the MPI are based on the MPICH
implementation.

• LAM-MPI (http://www.lam-mpi.org at UND)

– Aimed at (heterogeneous) workstation clusters.
– Not licensed under the GPL, but its license is ’open’.

4

MPICH

MPICH

5

MPICH Installation

• Download MPICH ... ftp://ftp.mcs.anl.gov/pub/mpi/mpich.tar.gz ,
and ftp://ftp.mcs.anl.gov/pub/mpi/patch.all

• Unpack MPICH ... tar xvfz mpich.tar.gz

• Apply all patches: patch -p0 < patch.all

• Configure MPICH ...

– Change directory to the MPICH directory
– Read the READMEfile!
– Read the documentation referenced in www/index.html !
– Configure MPICH... ./configure --with-device=ch_p4 ...

• Compile MPICH... make

• Install MPICH... make install

6

Configuration options for MPICH

guero(20)% ./configure --help
Configuring with args --help
Configuring MPICH Version 1.2.1 of : 2000/09/05 15:06:05
Usage: ./configure [--with-arch=ARCH_TYPE] [-comm=COMM_TYPE]

[--with-device=DEVICE]
[--with-mpe] [--without-mpe]
[--disable-f77] [--disable-f90] [--with-f90nag] [--with-f95nag]
[--disable-f90modules]
[--enable-c++] [--disable-c++]
[--enable-mpedbg] [--disable-mpedbg]
[--enable-devdebug] [--disable-devdebug]
[--enable-debug] [--disable-debug]
[--enable-long-long] [--disable-long-long]
[--enable-long-double] [--disable-long-double]
[-prefix=INSTALL_DIR]

[-c++[=C++_COMPILER]] [noc++]
[-opt=OPTFLAGS]
[-cc=C_COMPILER] [-fc=FORTRAN_COMPILER]
[-clinker=C_LINKER] [-flinker=FORTRAN_LINKER]
[-c++linker=CC_LINKER]
[-cflags=CFLAGS] [-fflags=FFLAGS] [-c++flags=CCFLAGS]
[-optcc=C_OPTFLAGS] [-optf77=F77_OPTFLAGS]
[-f90=F90_COMPILER] [-f90flags=F90_FLAGS]
[-f90inc=INCLUDE_DIRECTORY_SPEC_FORMAT_FOR_F90]
[-f90linker=F90_LINKER]
[-f90libpath=LIBRARY_PATH_SPEC_FORMAT_FOR_F90]
[-lib=LIBRARY] [-mpilibname=MPINAME]
(...)

7

Configuration options for MPICH

• A typical installation ...

./configure --prefix=/packages/mpich/mpich-1.2.1-absoft-7.0.1
--device=ch_p4 -rsh=ssh -cc=/packages/gcc/bin/gcc
-c++=/packages/gcc/bin/g++
-fc=/vendor/absoft/Pro_Fortran-7.0-1/bin/f77
-f90=/vendor/absoft/Pro_Fortran-7.0-1/bin/f95

– Install in /packages/mpich/mpich-1.2.1-absoft-7.0.1 .
– Use device ch_p4 .
– Use ssh to log in to the nodes.
– Use the GNU C and C++ compilers.
– Use the Absoft F77 and F95 compilers.

• If a production MPICH is to be built, use -opt=-O -disable-devdebug .
This will produce smaller libraries and slightly faster code.

8

Testing the MPICH Installation

• Correctness: After the compilation of MPICH type

make testing

This validates the functionality of the MPI by running a number of tests.

• Performance: Change directory to examples/perftest and type make.
Then you can run a number of performance tests (view the README file for
details). For example:

./rungoptest -maxnp 2 -add -bcast -gnuplot -fname bcast.mpl

The result can be viewed using

gnuplot bcast.mpl

9

Some Important Notes

• Make sure that users can log in to any node using either rsh of ssh
(depending on how you configured MPICH) without being prompted for a
password.

• Users must have the dirctory that conatains the MPICH installation in their
PATH.

• Users should have the directory that contains the MPICH man pages in their
MANPATH.

• If shared libraries were built, these libraries must be in the same directory
on all nodes of the cluster. Users must have this directory in their
LD LIBRARY PATH.

10

Features of MPICH

• ROMIO is a high-performance, portable implementation of MPI-IO, the I/O
chapter in MPI-2.

• MPE provides performance and correctness debugging, graphics, and some
common utility routines.

– A set of routines for creating logfiles for examination by various graphical
visualization tools : upshot, nupshot, Jumpshot-2 or Jumpshot-3.

– A shared-display parallel X graphics library.
– Routines for sequentializing a section of code being executed in parallel.
– Debugger setup routines.

11

Debugging Code with MPICH

• Use write or printf statements.

• The command line option -gdb
will start the code on node 0 in the debugger gdb . (This does not work in
conjunction with -nolocal)

• MPE library: Compile with

– -mpitrace to trace every call to an MPI function.
– -mpianim to view an animation of the communication (must link with

-lX11)
– -mpilog to create a log file that can be viewed with upshot after

conversion to the alog format (use clog2alog).

• The totalview debugger can be used in conjunction with MPICH.

12

LAM/MPI

LAM/MPI

13

LAM/MPI Installation

• Download LAM/MPI ... http://www.lam-mpi.org/download/ (the
current version is 6.5.2)

• Unpack LAM/MPI ... tar xvfz lam-6.5.3.tar.gz

• Read the READMEand INSTALL files.

• Configure LAM/MPI:

– ./configure --prefix=/packages/lam-6.5.2
– make
– make install

14

Conguration Options in LAM/MPI

mole(18)% ./configure --help
Usage: configure [options] [host]
Options: [defaults in brackets after descriptions]
(...)
Directory and file names:

--prefix=PREFIX install architecture-independent files in PREFIX
[/usr/local]

(...)
--with-cc=CC use C compiler CC
--with-cflags=CFLAGS use C compiler flags CFLAGS
--enable-shared[=PKGS] build shared libraries [default=no]
--without-romio disable ROMIO support in LAM/MPI
--with-romio-flags=FLAGS pass FLAGS to ROMIO’s configure script
--without-mpi2cpp build LAM without MPI 2 C++ bindings support
--with-cxx=CXX use C++ compiler CXX
--with-cxxflags=CXXFLAGS use C++ compiler flags CXXFLAGS
--with-exceptions enable support for C++ exceptions
--with-impi compile with IMPI support (6.4.x only)
--with-exflags Specify flags necessary to enable exceptions
--without-profiling disable the MPI profiling interface
--with-trillium enable installation of Trillium header/man/binary

files (not required for MPI)
--with-ldflags=LDFLAGS use LD linker flags LDFLAGS
--with-cxxldflags=CXXLDFLAGS use C++ LD linker flags CXXLDFLAGS
--with-fc=FC use Fortran compiler FC,

specify no to disable Fortran support
--with-fflags=FFLAGS use Fortran compiler flags FFLAGS
--with-rpi=RPI build with RPI comm layer RPI

(where RPI=tcp|sysv|usysv|myri|via -- default is tcp)
(...)

15

Running Parallel Code with LAM/MPI

• Include the directory where you installed LAM/MPI in your path. Note: You
must be able to ssh or rsh between the nodes.

• Edit the file LAMHOME/etc/lam-bhost.def to include one line for each
node in your cluster:
siam00 cpu=1
siam01 cpu=1
siam02 cpu=1
siam03 cpu=1

• Log in to one of these nodes and start the LAM environment: lamboot

• Now we can use mpirun to run our code:
siam00# mpirun -np 4 ./hello_world

• When you’re done, you must remove the LAM/MPI environment by typing
wipe

16

Testing the LAM/MPI installation

• Download the file lamtests-6.5.2.tar.bz2 , unpack it and cd into the
directory lamtests-6.5.2 .

• Read the READMEfile!

• If you’ve installed LAM/MPI correctly and the binaries are in your path, no
editing of the file Makefile.inc will be necessary.

• Use lamboot to start the LAM/MPI on at least one node.

• Type make to run all the tests.

• The hope is that at the end of the tests you will see the line
Total errors: 0 .

• Use wipe to finalize LAM/MPI.

17

Hello World!!

• Example code
program hello_world
include ’mpif.h’
integer nproc, myproc, ierror

call MPI_Init(ierror)
call MPI_Comm_size(MPI_COMM_WORLD, nproc, ierror)
call MPI_Comm_rank(MPI_COMM_WORLD, myproc, ierror)
call MPI_Finalize(ierror)

write(*,*) ’I am node ’,myproc,’ of ’,nproc
end

• Compile this using the mpif77 command.

• Create a file that conatains the names of the nodes, let’s call it mynodes
siam00
siam01
siam02
siam03

18

Hello World!!

To run this program, type on guero

guero[12]: mpirun -machinefile mynodes -nolocal -np 4 ./hello_world
I am node 2 of 4
I am node 1 of 4
I am node 3 of 4
I am node 0 of 4

19

Debugging Code with LAM/MPI

• If you must, use write or printf statements.

• Use a script to start the code within a debugger, let’s call it run_gdb.csh

#!/bin/csh -f

echo "Running xterm on ‘hostname‘"
xterm -e gdb $*
exit 0

Note: This script must be executable.

We can now run in parallel within gdb, for example

mpirun -np 2 run_xterm hello_world

20

Some Applications

• HPL Parallel Linpack: http://www.netlib.org/benchmark/hpl/
The standard yardstick that is used to measure the numerical performance
of a parallel computer.

• ATLAS Blas: http://www.netlib.org/atlas/index.html
An automatically tuned version of the BLAS and some of the LAPACK
routines. Without using these, Linpack will be very slow!

• NAS benchmarks: http://www.nas.nasa.gov/Software/NPB/
This benchmark gives a more realistic assessment of the computational
performance that can be expected from the cluster in applications.

21

Parallel Linpack Performance

Comparison of 100Mb/s, bonded 100Mb/s, and 1Gb/s:

Size \ Configuration 100Mb/s bonded 100Mb/s 1Gb/s
5000× 5000 2.032 GFlop/s 2.269 GFlop/s 2.493 GFlop/s

’Peak’ Linpack Performance (1Gb/s Configuration):

procs, problem size \ GFlop/s
1, 10000× 10000 .856
4, 20000× 20000 3.036

22

NAS Benchmarks

The NAS benchmark suite form NASA ...

BT CG EP IS LU MG SP
A 280 41 8.5 1.3 431 115 114
B 333 52 8.5 1.3 463 125 152
C 59 8.6 518 212 193

Numbers are in MFlop/s; A, B, C are different problem sizes.

23

